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OPTIMAL DECOMPOSITION FOR WAVELET IMAGE COMPRESSION
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Abstract — The paper discusses important feaiures of wavelet transform in compression of still images
including the extent to which the quality of image is degraded by process of wavelet compression and
decompression. A set of wavelet functions (wavelets) for implementation in still image compression
system is examined. The effects of different wavelet functions, image contents and compression ratios
are assessed. The benefit of this transform relating to today's methods is stressed. Our results provide
a good reference for application developers to choose a good wavelet compression system for their
application.
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L. INTRODUCTION

“In-recent years many studies have been made on wavelets. Excellent overview of what wavelets have
brought to the fields as diverse as biomedical applications, wireless. communications, computer
graphics or turbulence, 1s given in (Proceedings, 1996) Image compression is one of the most visible
applications of wavelets.

A typical still image contains a large amount of spatial redundancy in plain areas where adjacent
picture elements (pixels, pels) have almost the same values. In addition, still image can contain

- subjective redundancy, which is determined by properties of human visual system (HVS) (Jayant,
1993). HVS presents some tolerance to distortion depending upon the image content and viewing
conditions. The redundancy (both statistical and subjective) can be removed to achieve compression of
the image data. The basic measure for the performance of a compression algorithm is compression
ratio defined as ratio- between original data size and compressed data.size. In lossy compression
scheme, image compression algorithm should achieve trade off between compression ratio and image
quality (Zovko-Cihlar, 1995). A standard objective measure of compressed image quality is peak
signal to noise ratio (PSNR). For the common casé of 8 bits per picture element of input image, PSNR
is defined as the ratio of maximum input symbol energy to mean square error (MSE) which evaluate
difference between input image and reconstructed image, (1).

255° _ 1
PSNR(dB) =10log,, SE - (D

.- Transform coding is a widely used method of compressing image information. In a transform based -
compression system two-dimensional images are transformed from the spatial domain to the frequency
domain. An effective transform will concentrate useful information into a few of the low frequency
transform coefficients. - HVS is more sensitive to. energy with low spatial frequency than with high
spatial - frequency. Therefore -compression can be achieved ‘by quantizing the coefficients so that
important coefficients (low frequency. coefficients) are transmitted and remaining. coefficients are
discarded. Very effective and popular ways to achieve compression” of image data are.based on
Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). .

Current standards for compression of still (e.g. JPEG (ISO, 1991)) and moving -images (e.g.
MPEG-1 (ISO, 1993), MPEG-2 (ISO, 1994)) uses DCT, which represents an image as a superposition
of cosine functions with different discrete frequencies. DCT provides excellent energy compaction.and
a number of fast algorithms exist for calculating the DCT. Most existing compression systems use
square DCT blocks of regular size (ISO, 1991), (ISO, 1993), (ISO, 1994). The use of uniformly sized
blocks simplified the compression system but does not take into account the irregular shapes within
real images. The block-based segmentation of source image is fundamental limitation of the DCT-

based compression system (Bauer, 1996). The degradation is known as "blocking effect" and depends
on block size.
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In recent time, much of the research activities in image coding have been focused on the Discrete
Wavelet Transform (DWT) which has become a standard tool in image compression applications
because of their data reduction capability (Lewis, 1992), (Antonini, 1992). In wavelet compression
system the entire image is transformed and compressed as a single data object rather than block by
block as in DCT based compression system. It allows a uniform distribution of compression error
across the entire image. DWT offers adaptive spatial-frequency resolution (better spatial resolution at
high frequencies and better frequency resolution at low frequencies) that is well suited to the
properties of HVS. It can provide better image quality than DCT especially on higher compression
ratio (Grgic, 1999). But the implementation of the DCT is less expensive than that of the DWT. For
example, the most efficient algorithm for 2-D 8x8 DCT requires only 54 multiplication (Feig, 1990)
while the complexity of calculating DWT depends on the length of wavelet filters, which is at least
one multiplication per coefficient.

A wavelet image compression system can be created by selecting a type of wavelet function,
quantizer and statistical coder. In this paper we do not intend to give technical description of wavelet
image compression system. We used a few general types of wavelets and compared effects of wavelet
analysis and representation, compression ratio and image content resolution to image quality.

II. WAVELET TRANSFORM

Wavelet transform (WT) represents an image as a sum of wavelet functions (wavelets) with different
locations and scales (Daubechies, 1992). Any decomposition of an image into wavelets involves a pair
of waveforms: one to represent the high frequencies corresponding to the detailed parts of an image
(wavelet function-W) and one for the image's low frequencies or smooth parts (scaling function-®).
The two waveforms are translated and scaled on the time axis to produce a set of wavelet functions at
different locations and on' different scales. The result of WT is a set.of wavelet coefficients, which
measure the contribution of the wavelets at these locations and scales.

Multiresolution Analysis

. WT performs multiresolution image analysis (Mallat, 1989). The result of multiresolution analysis.is
simultaneous image representation on different resolution (and quality) levels (Mallat, 1989). The
resolution is determined by threshold below which all fluctuations or details are ignored. Difference
between two neighbouring resolutions represents details. Therefore an image can be represented by
low-resolution image (approximation or average part) and the details on each higher resolution level.

DWT for an image as a two-dimensional (2-D) signal can be derived from one-dimensional (1-D)
DWT. Easiest way for obtaining scaling and wavelet function.for two-dimensions is by multiplying
two I-D functions. Scaling function for 2-D DWT -can be obtained by multiplying two 1-D scaling
functmns @(x ) =D(x) @(y) Wavelet functions for 2-D DWT can be obtained by multiplying two

3 wavelet functions or ‘wavelet and scaling
function for 1-D analysis. For 2-D case there
exists three wavelet functions that scan details in
horizontal ¥ (x,y) = ¥x) D), vertical
0y)=dx) Hy) and diagonal direction:

P v y)=¥x) ). As result, there are three

types of detail images for each resolution:
horizontal, ~vertical and diagonal. The
decomposition can be repeated on the average
part of image. Here we adopt the term "number

Thus, a typical 2D-DWT, used in image
compression,  will  generate  hierarchical
pyramidal structure. Fig. 1. shows three levels of
‘wavelet decomposition of image “Lena™ (D=3).

Wavelet multiresolution and  direction

Fig. 1. Pyramidal structure of a wavelet selective decomposition of images is matched to
decomposed image "Lena" (D=3)
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HVS (Mallat, 1996). In the spatial domain the image can be considered as composition of information
on a number of different scales. A wavelet transform measures gray level image variations at different
scales. In the frequency domain the contrast sensitivity function of the HVS depends on frequency and
orientation of the details.

IIL. DWT IN IMAGE COMPRESSION
Image Contents

The fundamental difficulty in tcstmg image compression system is how to decide which test images to
use for the evaluations. The image contents being viewed influences the perception of quallty
irrespective of technical parameters of the system. Normally, a series of pictures, which are average in
terms of how difficult they are for system being evaluated, has been selected. To obtain a balance of
critical and moderately critical material we used four types of test images with different frequency
content: Peppers, Lena, Baboon and Zebra. Spectral activity of test images is evaluated using DCT
applied to the whole image. DCT coefficients as result of DCT show frequency contents of the image.
Fig. 2. shows the distributions of image values before and after DCT. The distribution of DCT
coefficients depends on image contents (white dots represent DCT coefficients, arrows indicate the
increase. of horizontal and vertical frequency). Moving across the top raw, horizontal spatial frequency
_increases. Moving down vertical spatial frequency increases. Images with high spectral activity are
more difficult for compression system to-handle. These 1 |mages usually contain large number of small
details and low spatial redundancy.

.
»- »

(c) Baboon (d) Zebra

Fig. 2. Frequency contents of test images

Choice of Wavelet Function

Choice of wavelet function is crucial for coding performance in image compression. This choice
should be adjusted to image content. Important properties of wavelet functions in image compression
applications are compact support (lead to efficient implementation), symmetry (useful in avoiding
dephasing in image processing), orthogonality (allow fast algorithm), regularity and degree of
smoothness (related to filter order or length of wavelet filter).

In our experiment four types of wavelet families are examined: Haar Wavelet (HW), Wavelet
(DW), Coiflet Wavelet (CW), and Biorthogonal Wavelet (BW). Daubechies and Coiflet wavelets are
- families of orthogonal wavelets that are compactly supported: Compactly supported wavelets
correspond to finite impulse response (FIR) filters and thus lead to efficient implementations (Zettler,
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1990). A major disadvantage of these wavelets is their asymmetry, which can cause artifacts at borders
of the wavelet subbands. DW is asymmetrical while CW is almost symmetrical. Symmetry in wavelets
can be obtained only if we are willing to give up either compact support or orthogonality of wavelet
(except for Haar wavelet, which is orthogonal, compactly supported and symmetric). If we want both
symmetry and compact support in wavelets, we should relax the orthogonality condition and allow
nonorthogonal wavelet functions. The example is the family of biorthogonal wavelets that contains
compactly supported and symmetric wavelets (Cohen, 1992). ' '

Filter Order (Length of Wavelet Filter)

Each wavelet family can be parameterised by an integer N that determines filter order. In our
examples different filter orders are used inside each wavelet family. The length of wavelet filter is
determined by filter order but relationship between filter order and length of wavelet filter is different
for different wavelet families. For example, the filter length is 2N for DW family and 6N for CW
family. Haar wavelet is the special case of DW with filter order 1 (DW-1). Biorthogonal wavelets can
use filters with similar or dissimilar orders for decomposition (Nd) and reconstruction (Nr). Therefore
BW is parameterised by two numbers and filter length is {max(2Nd, 2Nr)+2}. Higher filter orders
give wider functions in time domain with higher degree of smoothness, Fig. 3. Wavelet based image
compression prefers smooth functions of relatively short support. So, in image compression
application we have to find balance between length of wavelet filter and degree of smoothness. Inside
each wavelet family we can find wavelet function that represents optimal solution related to length of
wavelet filter and degree of smoothness but this solution depends on image contents (for different
images this optimal solution will not be the same).
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. Fig. 3. DW‘fafnily-_sca.ling and wavelet functions for different filter orders:
: (@N=1; ())N=2; (c)N=5, (d)N=10

Number of Decompositions

The quality of compressed image depends on the number of decompositions D. After decomposing
image and representing it with wavelet coefficients, compression can be performed by ignoring all
coefficients below some threshold. Number of decompositions determines the resolution of the lowest
level in wavelet domain. If we use larger D, we will be more successful in resolving important DWT
~ coefficients from less important coefficients. Human visual system is less sensitive to removal of
smaller detail. On the other hand, larger D causes the loss of the coding algorithm efficiency.
Therefore, adaptive decomposition is required to achieve balance between image quality and
complexity of computations.

Optimal D depends on filter order N. Higher N does not imply better image quality because of the
length of wavelet filter, which becomes limiting factor for decomposition. Decisions about the filter
order and number of decompositions are matter of compromise.
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IV. DWT COMPRESSION RESULTS

The choice of optimal wavelet function in image compression system for different image types can be
provided in few steps. For each filter order in each wavelet family optimal D can be found. Optimal D
gives the highest PSNR values in the wide range of compression ratios for given N. Table 1 shows
some of the results for DW and image "Lena". For lower filter orders better results are reached with
more decompositions. Shaded areas in Table 1 show optimal D for given N while bold types mark
optimal combination of N and D for image "Lena" (D=5, N=5). Similar results were achieved for other
wavelet families and other test images. For each wavelet family different filter orders are tested using
different test images. For each test image and each wavelet family optimal combination of filter order
and number of decompositions was found (shaded areas in Table 2).

Table 1 - Optimal number of decompositions for different filter orders in DW family

Wavelet Compression Ratio D

Family N 5:1 30:1 50:1 100:1

35,53 { 14,76 | 11,53 9,42 2

36,29 2379 | 21,59 4

DW

Table 2 — PSNR results in (dB) for different wavelet families and different compression ratios

Wavelet Peppers : Lena Zebra Baboon D
Family N 5:1 50:1 100:1 5:1 50:1 | -100:1 5:1 50:1 100:1 5:1 50:1 100:1
1 23,91 8
: "3 6
DW
5 5
10 37,09 23,05 16,60 36,00 23,20 16,46 27,02 16,84 14,44 27,59 21,15 12,57 3
2 39,67 | 24,62 22,18 37,80 | 24,55 22,33 5
3} + | 22.49 4
cw
- 4 38,96 24,56 21,81 22,15 27,96 17,93 1617 28,23 21,75 20,77 4
5 4
22 : 6 .
BW 3.1 37,93 21,62 18,39 35,36 21,29 18.52 24,22 14,65 12,56 24,66 16,67 17,63 6
33 39,15 23,30 20,78 36,54 23,38 2111 26.24 16,72 15,20 26,39 7.0,7?) 20,06 5
6.8 39,62 | 23,09 16,28 | 37,98 | 23,25 16,39 | 28,10 16,75 14,28 | 28,18 | 21,07 12,65 3

. The filter orders which give the best PSNR results inside each wavelet family are different for
-difterent test images except for BW family where filters with order 2 in decomposition and order 2 in
reconstruction (BW-2.2) gives the best results for all image types. The comparison of PSNR valucs of
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optimal filters (shaded areas in Table 2) from each wavelet family for different test images shows that
image "Peppers" (low spectral activity) has highest PSNR values and image "Zebra" (high spectral
activity) has smallest PSNR values. PSNR values depend on image type and cannot be used if we want
to compare images with different contents. If we want to compare visual quality of different test
images PSNR is not adequate measure and other measures such as Mean Opinion Score (MOS),
(Grgic, 1999) and Picture Quality Scale (PQS), (Miyahara, 1996) should be used.

V. CONCLUSIONS

We presented results from a comparative study of different wavelet based image compression systems

using objective PSNR quality measures. Wavelet-based image coding prefers smooth functions of
relatively short support with some degree of regularity. A suitable number of decompositions should

be determined by means of image quality and less computational operation on the reconstruction

process. Optimal number of decompositions depends on filter order and image contents. Decisions

about the filter order and number of decompositions are matter of compromise. Optimal wavelet

function for some image compression application should be adjusted to the typical image contents. -
The entire compression system should be designed with considerations of the characteristics of HVS.
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